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Abstract: The zebrafish is a robust model for studying human ophthalmic function and 
disease because of its fecundity, life-cycle, and similarities between its retinal structure and 
the human retina. Here, we demonstrate longitudinal in vivo imaging of retinal structure using 
optical coherence tomography (OCT) and noninvasive retinal vascular perfusion imaging 
using OCT angiography (OCT-A) in zebrafish. In addition, we present methods for retinal 
vascular segmentation and biometry to quantify vessel branch length, curvature, and angle. 
We further motivate retinal vascular biometry as a novel method for noninvasive zebrafish 
identification and demonstrated 99.9% accuracy for uniquely identifying eyes from a set of 
200 longitudinal OCT/OCT-A volumes. The described methods enable the quantitative 
analysis of the vascular changes in zebrafish models of ophthalmic diseases and may broadly 
benefit large-scale zebrafish studies. 
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1. Introduction 
As of 2010, there were an estimated 285 million visually impaired and 39 million blind 
individuals worldwide [1]. In the United States, proliferative diabetic retinopathy (PDR) and 
wet age-related macular degeneration (AMD) are two of the leading causes of severe vision-
loss and blindness [1, 2]. PDR is a complication of diabetes that is characterized by 
neovascularization originating from the retina and optic disc, which can result in hemorrhage, 
fibrosis, traction, and retinal detachment [3, 4]. An estimated 415 million adults suffer from 
diabetes globally, and almost half of all diabetics are expected to experience some degree of 
retinopathy [4, 5]. AMD is the leading cause of blindness among people aged 55 and older in 
the developed world and affect more than 1.75 million individuals in the United States [6, 7]. 
Wet AMD is characterized by neovascularization, which often leads to hemorrhage and 
exudation. While only 10 percent of AMD patients develop wet AMD, severe vision-loss 
progresses quickly in the majority of these patients [6]. 

Vascular endothelial growth factor (VEGF) inhibitors have become standard treatments 
for both PDR and wet AMD [8, 9]. Intravitreal anti-VEGF injection has been shown to 
maintain vision, with 91.5-95.4% of wet AMD patients in one clinical study showing less 
than a 15-letter decrease in visual acuity (VA) from baseline [10]. However, long-term anti-
VEGF treatment has been suggested to be less effective, and studies have shown that more 
than 30% of patients experience a VA loss of >15-letters after more than five years of 
treatment [11, 12]. Another major limitation of anti-VEGF therapy is the need for repeated 
injections on either a monthly or as-needed basis (~6-7 injections per year) [4, 10, 13]. In 
addition to patient anxiety, repeat injections also increase the risk of side effects such as 
endophthalmitis [14], acute increases in intraocular pressure requiring topical or surgical anti-
glaucoma interventions [15], and off-target drug effects including loss of retinal ganglion 
cells and circulation disturbances in the choriocapillaris [9]. The aforementioned limitations 
of the current clinical standard-of-care and lack of understanding of the structural, metabolic, 
and vascular changes underlying retinal neovascularization highlights the need to identify 
mechanisms of pathogenesis and novel anti-angiogenic therapies. 

The zebrafish (Danio rerio) is a popular model organism because mutant phenotypes of 
many human diseases are readily available and its fecundity and life cycle make it well-suited 
for large-scale studies [16, 17]. As an ophthalmological model, the zebrafish retina shares 
similar structure and function with that of humans and other vertebrates [18]. Similar to 
humans, the zebrafish retina is composed of seven major cell types (Müller glia and six neural 
cell types), three nuclear layers separated by two plexiform layers, and a highly ordered 
mosaic of neurons in each layer [19, 20]. As diurnal species, humans and zebrafish both have 
cone-dominant vision, in contrast to rod-dominant vision found in mice, which has 
advantages for studying cone degeneration diseases such as AMD [20, 21]. 

Zebrafish are also affected by and readily absorb compounds from their aqueous 
environment, which enables induction of pathologies and delivery of chemical compounds 
without the need for injections [22]. Retinal vasculopathies can be modeled by exposing 
animals to hypoxic water for 3-10 days to induce neovascularization and vascular leakage 
[21]. Similarly, exposure to glucose induces hyperglycemia, which has been shown to result 
in retinal structure abnormalities similar to those in DR [21]. As a pharmacological model, 
82% of disease-causing human proteins have orthologues in zebrafish, and pharmacological 
effects are highly conserved between humans and zebrafish [23–25]. 

The majority of drug screens in zebrafish are performed using larval animals because their 
transparency and size are well-suited for imaging and housing in large-scale studies [26]. 
However, normal vascular development [27] and differences in inflammatory and immune 
responses between larva and adults [27] may confound structural and functional changes in 
larval zebrafish models of neovascularization. In this study, we demonstrate in vivo retinal 
imaging in adult zebrafish (≥3 months post-fertilization, mpf) using optical coherence 
tomography (OCT) [28] and OCT angiography (OCT-A) [29], and present post-processing 
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algorithms for vascular segmentation and biometry. Quantitative measurements of retinal 
perfusion and angiogenesis during longitudinal studies can provide insights into disease 
pathogenesis and therapeutic efficacy in drug screens for novel anti-angiogenic compounds. 
In addition to tracking functional changes, retinal vascular biometry can also be used as a 
method for uniquely identifying individual animals with high sensitivity and specificity. To 
this end, we developed and validated a novel identification method that obviates the need for 
physical marking methods such as elastomer marking, freeze branding, removal of specific 
scales, fin clipping, and dorsal fin tagging [30]. We believe the retinal vascular biometry 
methods presented here are robust enabling technologies that will broadly benefit large-scale 
zebrafish studies. 

2. Methods
2.1 Imaging system 

OCT and OCT-A imaging of wild-type zebrafish was performed using a custom-built spectral 
domain OCT (SD-OCT) system (Fig. 1(a)). A superluminescent diode (InPhenix) with 855 
nm central wavelength and 90 nm bandwidth at full width half maximum was split between 
reference and sample arms using an 80:20 coupler, respectively, and detected on the central 
2048 pix. of a 4096 pix. linear CMOS array with 125 kHz line-rate (spL4096-140km, Basler). 
Measured system SNR was 91.7 dB with 700 µW at the sample. Measured axial resolution 
was 2.56 µm (tissue) and −6 dB SNR falloff was at 1.1 mm. Scanning relay optics in the 
sample arm were designed for a 1 mm diameter spot at the pupil. This includes a 4x 
demagnifying relay using a 1-inch diameter achromat (fs) and two 1/2-inch diameter 
achromats (foph) (Fig. 1(a)). Lateral resolution was estimated as 2.8 µm using a model eye but 
limited by aberrations. 

Fig. 1. In vivo retinal OCT imaging in zebrafish. (a) Custom-built SD-OCT system. CMOS, 
detector; f, collimating, objective, ophthalmic, and scan lenses; G, galvanometers; M, mirror; 
PC, polarization controller; SLD, superluminescent diode; VPHG, volume phase holograph 
grating. (b) Zebrafish retina was imaged in air through a contact lens and positioned using a 
custom holder (inset) on a 5-axis alignment stage. 

2.2 Imaging protocol 

In vivo imaging was performed under an animal protocol approved by the Institutional 
Animal Care and Use Committee (IACUC) at Cleveland Clinic. Both eyes in ten adult wild-
type zebrafish (≥3 mpf) were imaged repeatedly on ten different days over four weeks (10 
total data sets per eye). Repeat imaging days were separated by 48 hours. During each 
imaging session, animals were anesthetized using a 0.14% Tricaine solution. Retinal imaging 
was performed in air and a polymethyl methacrylate contact lens (Cantor & Nissell, Ltd., 
Northamptonshire, U.K.) was used to compensate for optical power differences in the 
zebrafish eye when imaging in air instead of water (Fig. 1(b), inset) [31]. Zebrafish OCT and 
OCT-A volumetric data sets were centered on the optical nerve head (ONH) using a 5-axis 
stage (Fig. 1(b), Leica Microsystems). OCT volumes consisted of 2500 B-scans (2048 x 500 
pix.) acquired in approximately 10 s and covered 10° field-of-view (FOV). These data sets 
included five repeated B-scans at each lateral position for OCT-A post-processing. Animal 
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imaging and handling were performed in less than 10 minutes followed by recovery, during 
which water was forced across the gills to ensure animal survival for the duration of the study 
[31]. Between imaging days, fish were housed in light and temperature controlled rooms in 
separated boxes and grouped so that individual animals were uniquely identifiable by 
strip/spot patterns and caudal fin cuts. 

2.3 Vessel segmentation and labeling 

Vessel segmentation, labeling, and feature extraction were performed on en face OCT-A 
projections using custom developed algorithms (Fig. 2). The steps are grouped into four 
categories to better represent the processing pipeline. Each of these steps are described in 
detail in the following sections. 

Fig. 2. Block diagram showing vessel segmentation, labeling, and feature extraction steps for 
automated vascular biometry. 

Data set acquisition and processing 

Bulk motion in OCT B-scan were removed using a discrete Fourier transform cross-
correlation [32]. First, repeated B-scans at the same location were registered to each other and 
averaged. Then, all averaged B-scans in the volumetric data set were registered to adjacent 
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scans. Volume registration parameters were calculated using OCT data and applied to the 
corresponding OCT-A frames. 

OCT-A vasculature maps were calculated using weighted optical microangiography 
(wOMAG) [33]. wOMAG uses OCT intensities to remove OCT-A artifacts caused by tissue 
hyper-reflectivity. Here, optical microangiography frames were weighted by an intensity 
decorrelation function, (D/D0)n. The decorrelation coefficient, D, represents the intensity 
decorrelation between repeated B-scans, and optimal values for D0 and n were found 
experimentally (D0 = 0.1, n = 0.5). 

Skeletonization of vascular maps 

En face OCT-A projections were lowpass filtered to smooth vessel contours and remove 
speckle noise. A vertical intensity gradient was also calculated and subtracted from the 
filtered vessel maps to remove breathing artifacts (horizontal streaks). The resulting OCT 
projections were then binarized and skeletonized using dilation and erosion [34]. 
Morphological dilation and erosion expand and compress binary images. OCT-A projections 
were dilated using a circular kernel (5 pixel radius) to remove vessel thickness nonuniformity 
and then eroded to obtain a one pixel width skeleton. 

Vessel classification and branch point detection 

Skeletonized vasculature maps were used to detect vessel branch points. Vessels were first 
classified as either ONH or retinal vessels. The retinal pigment epithelium (RPE) was 
segmented from OCT cross-sections [35] and the ONH was identified by discontinuities in 
the RPE. The resulting ONH segmentation was then fit to a circle that defined the ONH 
center and radius. All vessel branches within the ONH radius were classified as ONH vessels 
and all remaining vessels were further processed for branch point identification. 

A set of 18 predefined 3x3 pixel branch kernels was created to represent all possible 
orientations of vessel bifurcation and trifurcation (Fig. 3). The spatial location of each vessel 
branch point was identified by convolving the skeletonized vasculature map with each kernel. 
Branch points were then used to classify each vessel segment by branch generation relative to 
the ONH (Fig. 4). 

Fig. 3. Branch kernel matrix. 18 predefined 3x3 pixel kernels were created to represent all 
possible vessel branch orientations. 
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Quantitative vascular biometry 

Quantitative biometry was performed by extracting vessel segment length, curvature, and 
angle between branch points in the skeletonized vessel map (Fig. 4). Segment length was 
defined as the total number of pixels in each vessel segment, curvature was calculated as the 
ratio between the vessel segment length and Euclidean distance between corresponding 
branch points, and angle was calculated as the angle between vessel segments. Vascular 
biometrics were extracted for each vessel branch originating from the ONH starting from the 
12 o’clock position and moving clockwise around the ONH. 

Fig. 4. Quantitative vascular biometry. Length, curvature, and angle were defined using 
skeletonized vascular maps. Branch generations were assigned based on their connectivity 
relative to the ONH. 

2.4 Retinal vascular biometry for animal identification 

Retinal vascular biometry was evaluated as a robust, noncontact, and noninvasive method for 
unique zebrafish identification over longitudinal timepoints. A Pearson correlation coefficient 
matrix was calculated by comparing vessel branch length, curvature, and angle for all branch 
generations between all data sets. We then implemented different methods for comparing 
vascular biometry data between branch generations to uniquely identify eyes across our 
longitudinal data sets. 

A weighted average method was implemented to combine correlation values for each 
generation into a single correlation matrix between all data sets. Generation weights were 
calculated by optimizing identification sensitivity and specificity using particle swarm 
optimization [36] and a genetic algorithm [37]. Both methods found 0.9852, 0.0214, and 
0.0001 as the optimal weights for first three generations, respectively, and zero for all higher 
generation branches. Here, the weighted average favored contributions from lower 
generations to compensate for variability in OCT/OCT-A FOV between longitudinal 
timepoints, which may result in inconsistent biometrics from higher generation vessel 
branches. 

In addition to the weighted average approach, we also explored other methods for 
comparing correlation values that did not require a training set for branch generation weight 
optimization. The biometric identification accuracy of the weighted average method 
depended entirely on the robustness of the training set and can be easily biased. Based on our 
weight optimization results, it was clear that biometric identification should be dominated by 
first generation branches. Similarly, when comparing longitudinal data sets, the highest 
correlation values from matching eyes were also found in the first-generation branches. Thus, 
we simply used the maximum correlation coefficient from the first three branch generations 
as the correlation coefficient for the corresponding data set. 

For both the weighted average and maximum correlation approaches, a combined 
correlation matrix comparing all 200 data sets was created (i.e., 200 x 200 matrix). Using a 
priori knowledge that imaging was repeated in each eye ten times, the ten highest correlation 
matrix values for each data set were selected to correspond to matching eyes. Sensitivity, 
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specificity, and accuracy were then calculated to assess the performance of our biometric 
identification algorithms. 

3. Results
A representative in vivo OCT data set centered on the ONH is shown in Fig. 5 with retinal 
layers labeled based on previous studies comparing OCT cross-sections to corresponding 
histology (Fig. 5(b)) [38, 39]. 

Fig. 5. In vivo retinal OCT in zebrafish. (a) En face OCT projection with representative 
orthogonal cross-sections (blue/red lines and insets). (b) 5-frame averaged OCT cross-section 
with labeled retinal layers. GCL, ganglion cell layer; IPL, inner plexiform layer; INL, inner 
nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; OS, outer segment; and 
RPE, retinal pigment epithelium. 

The corresponding en face OCT-A projection shows central major vessels radiating 
outward from the ONH (Fig. 6). OCT-A B-scans show vessel cross-sections at the surface of 
the retina and flow artifacts at the RPE below each vessel. We distinguish retinal vessels from 
artifacts by segmenting and isolating only the upper layer of flow signals (Fig. 6(a), arrows) 
because in the adult zebrafish, the retinal vasculature forms a membranous layer that is 
attached to the vitreal interface [40]. 

Fig. 6. In vivo retinal OCT-A in zebrafish. (a) En face OCT-A projection with representative 
orthogonal cross-sections (blue/red lines and insets) showing retinal vessels (arrow) and RPE 
artifacts. (b) OCT-A projection with corresponding segmentation mask overlay. Vessel 
branches are color-coded based on their branch generation relative to the ONH (white circle). 
Scale bar 1°. 

OCT-A vessel maps were skeletonized, and the resulting vessel segments were color-
coded to represent different branch generations relative to the ONH (Fig. 6(b)). Any 
skeletonized vessel segments that began and ended within the ONH (white circle) were 
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ignored. Vessels that began inside and ended outside of the ONH were considered the first 
branch generation (green) and branch generations were incremented radially outward from 
the ONH. Total processing time for each OCT-A data set was approximately 13 minutes, the 
bulk of which was spent on volumetric registration (>12 min.). Skeletonization and vessel 
segmentation was performed in ~30 s per vascular map. 

Automatically segmented vessel maps were evaluated by manual graders to quantify the 
robustness of our algorithm. Errors were identified in 2.5% of data (5 of 200 vessel maps) and 
classified as either segmentation errors at the periphery of the FOV (Fig. 7) or inside the 
ONH (Fig. 8). At the edge of the FOV, segmentation is confounded by areas of low OCT-A 
contrast and cropped vessel branches. Poor contrast results in missed branches and branch 
points (Fig. 7, pink arrows). Similarly, vessels cropped at the end of the imaging FOV may 
result in missed branch points (Fig. 7, orange arrows). Missing branches or branch points 
confound all downstream analyses, including branch generation labeling and quantification of 
branch length, curvature, and angle. Mislabeled branch generations also occurred because of 
overlap between a vessel branch point and the ONH rim. In these cases, there was ambiguity 
in classifying the vessel segment as either a retinal or ONH vessel, which led to the 
mislabeling of subsequent branch generations originating from the initial mislabeled ONH 
branch (Fig. 8). 

Fig. 7. Segmentation errors at the FOV periphery. Representative en face (a), (d) OCT; (b), (e) 
OCT-A; and (c), (f) segmentation maps of the same eye at two longitudinal timepoints. Some 
generation 3 branches were misidentified as part of generation 2 branches because of poor 
OCT-A contrast (pink arrows). Similarly, branches cropped by the edge of the FOV (dashed 
lines) with sufficient contrast may be misidentified as part of the preceding generation (orange 
arrows). 

Automatically extracted quantitative vascular biometrics were color-coded and plotted as 
maps of vessel branch length, curvature, and angle to enable qualitative comparisons between 
longitudinal data across different animals and eyes (Fig. 9). Biometrics were grouped by left 
(OS) or right (OD) eye in each fish, and all 10 repeated longitudinal data sets in each eye 
were displayed as vertical columns. In the horizontal axis, branch segments (row) were 
grouped by branch generations. Within each eye, similar biometric patterns were observed in 
repeat data sets, but data between eyes and fish showed significantly different biometric 
features. 
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Fig. 8. Segmentation errors at the ONH. (a)-(c) En face OCT-A, (d)-(f) segmentation maps, 
and (g)-(i) magnified views around the ONH of the same eye at three longitudinal timepoints. 
(d), (g) Correctly labeled data sets show ONH vessels in gray. (e), (h) and (f), (i) Branch 
generation labeling errors show ONH vessels labeled as first-generation vessels (arrows). 

Fig. 9. Quantitative vascular biometry. Vessel branch (a) length, (b) curvature, and (c) angle of 
10 repeated longitudinal data sets (columns) for both eyes of 10 zebrafish (column groups). 
Each column group showed biometric changes in 10 imaging sessions for one eye. Biometrics 
in each eye were grouped by branch generation (row groups) and each row in generation 
represent one vessel in the respective generation. Color coded biometric features shows change 
in length, curvature, and angle in each vessel over time. 
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Branch vessel length was identified as the most robust biometric parameter for comparing 
vascular data between longitudinal timepoints because it had the highest dynamic range and 
lowest noise of all three parameters (Fig. 9.). Qualitatively and expectedly, biometric data 
becomes noisier in higher generation (>3) vessel branches because of aforementioned 
segmentation errors at the edge of the FOV (Fig. 10). 

Fig. 10. Vessel branch length comparison in the same eye between longitudinal timepoints. (a) 
Representative biometric map showing vessel branch length differences (columns) between 10 
repeated data sets (rows) in one eye. (b)-(d) Segmented vascular maps at 3 representative 
timepoints showing similar length parameters in the first and second vessel generations and 
increased variability in higher generations as a result of FOV differences (arrow and asterisks). 

Higher branch generation biometric parameters were strongly influenced by eye position 
in the FOV. As explained in Section 2.4, the first-generation branches dominated biometric 
identification as compared to higher generations. Our weighted average approach achieved 
96.5% sensitivity and 99.8% specificity for uniquely identifying data sets from the same eye 
across longitudinal timepoints. When the previously described segmentation errors were 
corrected, the weighted average sensitivity and specificity increased to 98.4% and 99.9%, 
respectively. Our maximum correlation approach achieved 98.9% and 99.9% sensitivity and 
specificity, respectively, and 99.9% accuracy using the same set of data without the need for a 
training set. More in-depth analysis of the maximum correlation approach showed that first 
generation branch correlations were dominant in 87% of all correctly identified data sets and 
the second and third generation correlations were dominant in 12.6%, and 0.4%, respectively. 
Similarly, first generation branch correlations were dominant in all misidentified data sets. 

4. Discussion
We presented a novel zebrafish identification method that is efficient and robust. Total 
processing time for vascular segmentation and labeling was ~30 s, and our maximum 
correlation identification algorithm achieved a sensitivity and specificity of 98.9% and 99.9%, 
respectively, without the need for a training set. Our proposed method addresses major 
limitations in large population imaging studies of adult zebrafish, specifically the need to 
uniquely identify animals between longitudinal timepoints. High sensitivity and specificity 
identification methods may eliminate the need for fin cutting and housing animals in limited 
groups (4-6 fish). OCT-A also provided functional information to enable quantitative 
biometrics in zebrafish models of retinal vascular pathologies. The full retinal vasculature is 
visualized on OCT-A. Zebrafish retinal vasculature forms a single layer attached to the vitreal 
interface [41]. Main branches arborize from the ONH, but do not form subretinal plexi as 
compared to other model animals [31]. 

In our preliminary study, identification errors were primarily a result of differences in 
FOV between longitudinal timepoints. Translational differences in FOV affected the visibility 
of peripheral vessels, which contributed to increased noise in biometric parameters for higher 
branch generations. Vessel branches that were cropped at the edge of the FOV may cause 
branch points to be missed during automatic feature identification. The current algorithm 
defines branch points as the point where a parent branch ramifies into two or three children 
branches. Loss of children branches by FOV cropping can result in a parent and child branch 
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to be considered as a single vessel branch, resulting in significant errors in biometric 
quantification (Fig. 10). We overcame these errors by omitting higher generation branch 
vessels that intersect the FOV edge from our identification algorithm to avoid the potential for 
associated errors. Rotational differences of the FOV at different timepoints also limited the 
accuracy of biometric comparisons because branch vessels may be mislabeled between data 
sets. Rotational errors may be addressed using volumetric registration of images at different 
timepoints at the expense of increased computational complexity. ONH segmentation errors 
were also observed between timepoints. Inaccurate identification of ONH vessels resulted in 
vessel generation labeling errors for all subsequent branch vessels. One possible solution for 
ONH vessel segmentation errors may be to appropriately threshold first generation branch 
length because ONH vessels are significantly shorter than first generation vessels. 

The major computational bottleneck of our current algorithm was volumetric registration, 
which was ~12 min per volume. However, registration does not significantly limit the utility 
of our biometry method because it is performed in post-processing and real-time operation is 
not required. In addition, we observed that registration of repeated OCT-A frames at the same 
position was not necessary in all eyes. Thus, increased OCT/OCT-A imaging speeds may 
obviate the need for volumetric registration to remove bulk motion noise. 

5. Conclusion
We demonstrated the utility of OCT and OCT-A for structural and functional imaging of the 
zebrafish retina. Quantitative vascular biometric parameters were automatically extracted 
from OCT-A vessel maps and used to uniquely identify eyes in different fish between 
longitudinal timepoints. Using a maximum correlation approach, we achieved an 
identification accuracy of 99.9% in a preliminary study of wild-type fish over 10 repeated 
timepoints. This technology eliminates the need to manually mark and identify animals and 
provides quantitative metrics for studying functional changes in zebrafish models of retinal 
pathologies. 
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